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FREE BOUNDARY PROBLEMS ARISING IN THE
CONTROL OF A FLEXIBLE ROBOT ARM!"

Thomas 1. Seidman
Department of Mathematics and Statistics
University of Maryland Baltimore County
Catonsville, MD 21228 USA
(BITNET: seidman@umbc, arpanet: seidman@umbc3)

> ABSTRACT: Modeling of a flexible robot arm mounted at a prismatic joint leads
to a moving boundary problem. In a control-theoretic context with joint motion as
control, these become free boundary problems. Some problems are discussed for trans-
verse vibration (the beam equation) but the principal result is an exact controllability
theorem for longitudinal vibration (the wave equation).

Key words: free boundary, robot arm, prismatic joint, beam equation, feedback, wave
equation, exact controllability

1. INTRODUCTION

We consider the modeling of a robot arm consisting of a flexible beam with a prismatic
joint — that is, a mounting of the arm in which one end is clamped but permits
controlled in-out motion so the extension of the arm (i.e., the relevant portion of
the beam) has variable length ¢ = £(t). In this case ‘flexible’ means only that the
dynamics of the beam must be modeled by a partial differential equation: treatment.
as a rigid body is an inadequate approximation in that vibration (i.e., time-dependent
deviation from the nominal rigid-body position) is a significant aspect of the problem.
T'he space-time domain on which we consider the dynarmics is thus

(1.1) Q—0r: {(ts):0<t<T;0<s~€t)}
'Thia research has heen pull\“\ cupported by the 1.8, Air Force Office of Scientific Research
under grant #AFOSR-87 0190
2This material was presented at the international colloquinm: Free Boundary Problems: Theory
and Applications held at Ireee (Bavaria, Cermany) June 11-20, 1987, The present text will appear in
the proceedings of that conference, ~dited hy K.-H. Hoffmann and J. Sprekels.
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.:p' where s denotes length (in material coordinates, measured from the tip of the arm).
:' :;:_’ This is certainly a moving boundary problem. I'rom a control-theoretic point of view,
' ::: we note that the significant question is precisely the determination of the control ¢(-)
A so we will have a free boundary problem.
‘D In the next section we analyze purely longitudinal vibration of such a beam. This
o4 is not, of course, the problem of greatest practical concern but we will be able to
"‘::- treat it with some degree of completeness — showing ezact controllability, subject
;} only to some rather mild conditions. The more significant problem of treating trans-
o verse vibration in this context requires more extensive analysis than can be presented
LT here. A brief discussion of such problems® is presented in Section 3. For our present
; 0 purposes we take the beam to be (nominally) horizontal along the z-axis of the ‘lab-
w, . . « . I . . .
‘o oratory coordinate system’ with the joint rigidly fixed at the origin. Included in our
O model is a load of mass m supported at the free end of the arm. We assume that the
3 ol
“ system is (except for the boundary condition at the joint) conservative — dissipative
R mechanisms such as friction and, e.g., air resistance can be neglected.
G
bis.
‘:0 )
(-9"-- 2. EXACT CONTROLLABILITY
.
o [ere we restrict our consideration to the purely longitudinal vibrations of the arm.
) i Suppose we let z(t,s) be the actual position (in the laboratory coordinate system)
1 . . .
R of the material point s at time t. The formulation of the dynamics takes a much
0 simpler form if we take the unknown to be v := [s I z] so, e.g., v = € at the joint. For
:) a hyperelastic stress-sirain law® one can easily show, using Hamilton’s Principle of
::;:‘ Stationary Action and a bit of manipulation, that v must satisfly the one-dimensional
Rl wave equalion:
o
: ) (2]) AV = w('vva)a on QT
v . -
® with the boundary conditions:
A0
.\:j * (2.2) v—F at the joint: s = £ = (1),
iy,
D .
;’j (2.3) m g = Yr(v,) at the tip: s = 0.
_‘
®. IWork on such pmhleme has heen initiated by P.K.C. Wang and, indeed, [2] shonld be acknowledged
-:::' as the principal stimulus to the present work. Many interesting '\nd important problems remain open.
::.0: *In practice one wonld expect that the joint may, itzelf, he mounted on a moving support (e.g.,
h on another arm) and/or that theie ia ecoupling with a controlled rotatinn aronnd a vertical axis. One
1t L .. . . .
,:.0' might algo wigh to include the posaibility that the mounting is nomnally vigid yet aubject tn vibration
' giving ‘noige’ in the houndary condition there; cnmpare {§].
4 "We make the nsual assumption that the elastic potentsal ¥ = W(s, r) is convex in r with minimum
‘:?:.' at W(s,0) = 0. We set y(s,r) ~ ¥, (. r) and let p(2) be the mass denasity.
.l'..
.0.‘.
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To this we adjoin specification of initial conditions:
(2.4) €0)=¢"and v=1v"° v =1v"on|0,0 att=0,

subject to (2.2): v?(¢°) = £° as a compatibility condition.
Suppose, in addition to (2.4), one were also to specily a target state for the
terminal time ¢t = T

(2.5) UT)=¢"and v=v",v,=w on[0,T|att =T,
again subject to (2.2). Our object is to prove ezact controllability:

There should be a time T > 0 and an admissible control function £(-) on
[0, T| such that (2.1), (2.4), (2.2), (2.3) give (2.5)

under suitable (mild) hypotheses. By “admissible” we mean that €(0) = ¢°, ¢(T) = €7,
and®

(2.6) [e(¢)) — €(12)] < K|ty — 1, with & < |

which will ensure that the free boundary curve: I' := {s = £(t)} is ‘time-like’ so a
characteristic [s £ ¢ = const.] can intersect ' only once (transversely).

For simplicity of exposition we present, in detail only the linear case’ for which
(2.1) reduces to

(2.7) Vit = Vag on QT.

In this case the method of characteristics gives the simple decomposition

(2.8) v(t,s) = f(s+¢t) +g(s — 1)

into left- and right-moving waves. Note that differentiating (2.8) gives the identities:
(2.9) (s +¢) ={v(t,s) + vi(t,5)]/2,

g'(s —t) = [va(t, 5) — ve(t, )]/ 2.

The representation (2.8) gives the general (weak) solution of (2.7) and, in terms
of f,g, the boundary conditions (2.2), (2.3) now become:

(2.10) J(B(t) +1) + g(e() — 1) = €(1),

(2.11) mif"(s) v g"(—9)] = f'(s) + ¢'(-9).

“Physically, this corresponds tn a requirement that the controlled motion at the joint must always
be slower than the wave propagation speed along the beam. For smooth €(:) it is equivalent to
le(e)} < x < L.

e, W(s,r) = ;ﬁ(s)rz g0 ¢ = fAr. We further simplify by assuming the beam is homogeneous g0,
in suitable units, p = f = 1.
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Note that we can differentiate (2.10) with respect to t to obtain an ODE for ¢:

W
s
"%5 o ; flie+t)—g'(e-1t)
< (2.12) ¢ : , :
i L-[/'(e+t) - g'(e-1)
'.?... From the inequality: Ju — v| + {u + v| < 2max{|u|, |v|} it would follow that (2.12) is
.0.:"'. well-behaved —- indeed, giving (2.6) — if we were always to have
4
O
e (2.13) 1£'11g') < #/2
;':20
¢ where defined.
N The initial data v°,w® in (2.4) determine f,g on |0,¢€°| using (2.9) with ¢t = 0. In
Y particular, we have ¢’ determined on D§ := {(t,s) : 0 < s — t < £°}. We then can use
:: " (2.11) as an ODE for ¢' to obtain:
»‘I‘g‘
:" U R N *
3 (2.14) g(s) = vd+w°)(~s)+e/mw’(0)
e +} / el Fm 0 4 wO)(r) dr
e ™o ‘
_:‘; for —€° < s < 0, which defines ¢’ from (2.4) on D{ := {(t,s) : —€° < s —t < 0}.
' Finally, we note that v(€°,0) is determined by the data of (2.4).
(._,.. Similarly, we note that the target data in (2.5) directly determine f’ on D} :=
e {(t,s) : T < s+t <€+ T}, using (2.9) with t = T, and give,® now using (2.11) as
:'. an ODE for [': :
"
%'.'.)0' (2.15) f(T-7) = Lol +wT)(r) +e"/™wT(0)
r
R +,ln e"/"‘[v,T + wT}(r) dr
:..‘@ °
. . for 0 < r < €T, which defines f' from (2.5) on D] := {(t,s): T — €T < s+t < T}.
N From (2.5) we also, then, determine v(T — ¢T,0).
%' We now choose Cauchy data on the segment: G := {(t,0) : £* <t < T — €7},
‘-\_':;: ' taking v(t,0) linear in ¢, making v, constant:
S8
'.‘S' T o
= 2 16 LO) = e v(T — €",0) - v(£,0)
;‘ ( . ) vt(v ) c: T__le0+€7']
" on G. This gives v,(t,0) = muv, = 0 by (2.3) with ¥(r) = r. Using (2.9), we now
e have
::‘.:. (2.17) ['=¢/2 on Df:={(t,s): " < s+t <T -0},
PUNG ) .
s g = —c/2 on Df:={(t,s): " ~T<s—-t< -0}
™ 3 To avoid n}ly possibility of conflict we aseume that T is chosen so T' > €" + €T, giving -8 < (T - T
,::'..' and €' < T + (7 later we will strengthen 1his requirement to (2.18). Note that the computation, here,
:.:‘.g from (2.5) is independent {to within translation in t} of the particular choice of T.
I:.’
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_:: 0
P
:;:'; Note that if we require that

“»
Ply - (2.18) T > |6+ €7) + |v(T - €7,0) - v(¢°,0)|/x,
P
'_j then (2.16), {2.17) give (2.13) on DI, D4. If we now impose the requirement that
\
,':‘ (2.19) lv2], |w®] < /4 on [0,€,
. »
:'. [vT],|wT| < &/4 on [0, €T},
)?,
:ﬁ:: then (2.13) holds on D}, D§ directly from (2.9) and it easily follows from (2.14), (2.15),
(W ihat we will also have (2.13) on D{, D{.
BAG
:' Theorem 1:  Suppose one is given the data of (2.4), (2.5) subject to compatibility
. with (2.2) and the condition (2.19) with k < 1. (Assume w®, w’ are continuous
n and v°, vT € C')) Then there exists T > 0 and an admissible control function
' () € C'|0,T| such that the solution v of (2.7), (2.4), (2.2), (2.3) also satisfies (2.5).
o PROOF:  As ahove, solve (2.7), (2.4), (2.3) on the triangle &g = {(t,8) : 0 <
':_f- t,s; s+t <€} and (2.7), (2.5), (2.3) on Ar = {(t,s): 0< T —t,s; s—t < T - T}
'_-'.-f — obtaining, in particular, v(€°,0) and v(T — £7,0). Then choose T subject to
\G (2.18) and specify Cauchy data on G as above — i.e., (2.16) and v, = 0. Thus, [ is
. determined on D/ = D§ U D{ U DJ and g on D9 = D4 U DY L DY with (2.13) satisfied
L on § = D/ N DY as in the discussion above. Note that our assumptions give f',g'

*: continuous on §.
‘o) Starting with the initial condition: £(0) = ¢°, solve® (2.12) to obtain I'. This
o
‘o solution curve satisfies (2.10) and (2.6). Note that the solution curve I' cannot leave
®) S before ¢t = T by, e.g., crossing the characteristic: [s + ¢ = €7 + T| — say, at a point
K ' (f.,t.) — since this would give, by (2.10):
T
i;: ’T+T—’tt = eo = f(eo +tc) "‘ g(eo _tt)
o = (€T +T)+g(7 +T -2t.)
, = |67 ~g(€" - T)| + (€T + T - 2t.),

l
& contradicting the fact that |¢'| < /2 < 1/2; similarly, I' cannot leave $ by crossing
‘Q [s —t = €7 — T| since |['| < 1/2. It follows that ¢(-) is well-defined on [0, T| with

0(T) = €7,

‘- This specification of T, (-) defines @7. In view of (2.6), the geometry of " ensures
:::. that Q7 C AnUATUS so f.q are both defined on all of Q7. Now (2.8) gives a (weak)
t.‘l' . solution v of (2.7) and the construction ensures Lhat we also have (2.4), (2.5), (2.2),
W (2.3) as desired. 1)
" [ e
7A solution exists since the right hand side of (2.12) is continuous in € (as long as one remains in
o §). Our assumptions do not give a Lipschits condition; thus uniqueness — not really needed for the
l:" Theorem — would have to be nhtained hy a different argument: noting that (2.13) makes the right
h hand side of (2.10) contractive in /.
R
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Remarks:  The regularity required for the data — continuity of v%, w°, vT,wT —
can be weakened by a limit argument. In this case one retains (2.6) although ¢ may
no longer be continuous. There is also no really new difficulty in considering spatially
variable coeflicients: pvy = (B v,).. The argument must be modified in detail'® but
is essentially similar in spirit.

It is worth noting that the construction in the proof above can be viewed from a
slightly different perspective. After solving on Ay and Ay one fills in Cauchy data on
a ‘gap’ § so as to consider an tnitial value problem with the roles of ¢t and s reversed
— taking, say, v°,vT (perhaps suitably extended to larger s) as boundary data. The
choice of data on G and the bounds (2.19) are such as to ensure that |v,| < k < |
which then makes the right hand side of {(2.10) contractive in £ so (2.10) determines
€(t) uniquely for each t. (One must also, of course, verify that this gives €(-) as an
‘admissible control function’.)

Stated this way, it is clear that the argument does not really depend on the
linearity of (2.7) or on the possibility of a decomposition (2.8). Without providing
details, we note only that one can treat (2.1) from this point of view under quite mild
conditions on ¥(-). If we set ¢ := ¥~!, w = v, and u = ¢¥(v,) so v, = #(u) we can
rewrite (2.1) in terms as a system:

(2.20) Ly = pwy w, = ¢(u),

suggesting the role-reversed problem. The crux of the argument, now, is to show that
‘reasonable bounds’ on the initial and target data can be imposed to ensure that one
will have (for a suitable construction of G and of the data there, satisfying m w, = u)
the necessary bound: = |¢(u)} < x to be able to apply the Contractive Mapping
Theorem to (2.10). O

3. TRANSVERSE VIBRATION

In this section we present an extremely brief introduction to the class of problems
which might be considered. As above, we consider the robot arm as a nominally
horizontal beam with a load m at the tip and with no dissipation or body forces (e.g.,
ignoring [riction, gravity, ... ). Here, however, we consider transverse vibrations. For
simplicity we consider only vertical vibration, so the principal unknown is the vertical
deflection u = %(t,s). Thus, the ‘laboratory coordinates’ of a material point s will
be |x,y, 2] = [€(t) — 5,0,u(t,s)]. Further, we ignore shear and work with a linearized

g, - the characteristics are o longer straight lines and the propagation along them may no longer
be constant. We now must take x to he a constant less than the minimum sound speed and impose a
more stringent condition (2.19).
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We begin with the ‘clamped’ boundary conditions at the prismatic joint:
(3.1) U =u, = at the joint: s = £(¢).

Next, in this setting a geometric analysis shows that the stress deformation for a
segment ds of the beam is proportional to [radius of curvature]~? so the strain energy

(elastic potential) is ~ ;ﬂuf_,ds where (J (sometimes written as ET) corresponds to
stiffness. The corresponding kinetic energy is:

«(t) , .
%_/0 [P (6 +ul) + aul)ds + L m (€ + «}) + avl|l=0

where a is the cross-sectional moment. By Hamilton’s Principle, we obtain the Euler-
Bernoulli beam equation!?

(32) puy + (a us!t)s + (ﬂ ues)ss =0 on QT
(where Q7 is as above in (1.1)) and the other boundary conditions:
(3.3) Mg + 0ty = (fttg)e, aug+ Pu,, =0 atthetip: s=0.

The system, if the control function £(-) were specified, would consist of (3.2) with
(3.1) and (3.3) together with initial conditions (2.4). We note here, however, that the
type of problem having particular control-theoretic significance is that which arises
when ¢(-) is determined in feedback form:

(3.4) €(t) = Afu(t,-)|,

i.e., one couples (3.4) with the other conditjons as an implicit characterization of the
free boundary T.

In (3.4), we consider A[-] as some suitable functional — presumably a function
®(w) for some (finite) set of implementable observations:!* w = Clu|. For example,
one might take A to be of the form Afu| = ®(Clu|) with

(3.5) Coouves {0, ttyyleze. } = w.

""Use of a linearized stress-strain relation iz a consequence of the fundamental beam assnmption:
‘infinitesimal’ cross-section, giving infinitesimal deformations. The significant assumption is the the
simplifying but rather restrictive one that the arm always remains straight enough to ignore the
sn-called 'geometrlc nonlinearitiee’ - essentially, that one can adequately approximate [radius of
curvature] "2 by u?,| linear velocity by [fi + u,/k|, angular velocity [arctan tele by —u.y, etc.

2Note that the equation is just the standard beam equation when we use s as the independent
variable. This formulation is somewhat different from that of |2|.

YAlternatively, we might consider A - ®({z) where z is the solution of an auxiliary system of the
form: 2 = F(z,w).

LR uy.
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Such an observation operator C might be implementable by, say, visual observation
of the tip position and placing an accelerometer on the beam at s,, allowing for the
(known) effect of the joint motion. This would give, as an example,

(3.6) €(t) = ®(u(t,0), uelt,s.))

for some given function ®.
Once a specific form of the feedback tunctional A[:| has been prescribed, the
problem is analysis'* of the full system: (3.2), (2.4), (3.1), (3.3), and, e.g., (3.6) to

determine existence and uniqueness as well as such properties of control-theoretic
interest as stability.
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14From the control-theoretic viewpoint the interesting analysis begins after this analysis has been
done: to determine the feedback functionals with desirable properties and, perhaps, to make an optimal
choice.
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